<<настрой - КИ >> ш а л о м, хавер !

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » <<настрой - КИ >> ш а л о м, хавер ! » ВСЕЛЕННАЯ » Научная картина мира (НКМ)


Научная картина мира (НКМ)

Сообщений 1 страница 3 из 3

1

Научная картина мира (НКМ)
— (одно из основополагающих понятий в естествознании) особая форма систематизации знаний, качественное обобщение и мировоззренческий синтез различных научных теорий. Будучи целостной системой представлений об общих свойствах и закономерностях объективного мира, научная картина мира существует как сложная структура, включающая в себя в качестве составных частей общенаучную картину мира и картины мира отдельных наук (физическая, биологическая, геологическая и т.п.). Картины мира отдельных наук, в свою очередь, включают в себя соответствующие многочисленные концепции — определенные способы понимания и трактовки каких-либо предметов, явлений и процессов объективного мира, существующие в каждой отдельной науке.

В процессе познания окружающего мира результаты познания отражаются и закрепляются в сознании человека в виде знаний, умений, навыков, типов поведения и общения. Совокупность результатов познавательной деятельности человека образует определенную модель (картину мира). В истории человечества было создано и существовало довольно большое количество самых разнообразных картин мира, каждая из которых отличалась своим видением мира и специфическим его объяснением. Однако самое широкое и полное представление о мире дает научная картина мира[источник?], которая включает в себя важнейшие достижения науки, создающие определенное понимание мира и места человека в нем. В нее не входят частные знания о различных свойствах конкретных явлений, о деталях самого познавательного процесса. Научная картина мира не является совокупностью всех знаний человека об объективном мире, она представляет собой целостную систему представлений об общих свойствах, сферах, уровнях и закономерностях реальной действительности.

Научная картина мира - система представлений о свойствах и закономерностях действительности (реально существующего мира), построенная в результате обобщения и синтеза научных понятий и принципов. Использует научный язык для обозначения объектов и явлений материи.

В процессе развития науки происходит постоянное обновление знаний, идей и концепций, более ранние представления становятся частными случаями новых теорий. Научная картина мира — не догма и не абсолютная истина. Научные представления об окружающем мире основаны на всей совокупности доказанных фактов и установленных причинно-следственных связей, что позволяет с определённой степенью уверенности делать способствующие развитию человеческой цивилизации заключения и предсказания о свойствах нашего мира. Несоответствие результатов проверки теории, гипотезе, концепции, выявление новых фактов - всё это заставляет пересматривать имеющиеся представления и создавать новые, более соответствующие реальности. В таком развитии — суть научного метода.

2

Сравнение с другими представлениями

С религиозным

Научная картина мира может отличаться от религиозных представлений о мире, основаных на авторитете пророков, религиозной традиции, священных текстах и т.д. Поэтому религиозные представления более консервативны в отличие от научных, меняющихся в результате обнаружения новых фактов. В свою очередь, религиозные концепции мироздания могут изменяться, чтобы приблизиться к научным взглядам своего времени. В основе получения научной картины мира лежит эксперимент, который позволяет подтвердить достоверность тех или иных суждений. В основе религиозной картины мира лежит принятие на веру тех или иных суждений, принадлежащих какому либо авторитету.

С художественным и бытовым

Научная картина мира отличается также от мировоззрения, свойственного бытовому или художественного восприятию мира, использующего бытовой/художественный язык для обозначения объектов и явлений мира. Например, человек искусства создает художественные образы мира на основании синтеза своего субъективного (эмоционального восприятия) и объективного (бесстрастного) постижения, в то время как человек науки сосредоточен на исключительно объективном и с помощью критического мышления устраняет субъективность из результатов исследований. Эмоциональное восприятие правополушарно (образно), в то время как логическое научное обоснование, абстракции, обобщения - левополушарно[источник?].

С философским

Отношения науки и философии являются предметом дискуссии. С одной стороны, история философии — это гуманитарная наука, основной метод которой - толкование и сравнение текстов. С другой стороны, философия претендует на то, чтобы быть чем-то большим, чем наука, ее началом и итогом, методологией науки и её обобщением, теорией более высокого порядка, метанаукой. Наука существует как процесс выдвижения и опровержения гипотез, роль философии при этом заключается в исследовании критериев научности и рациональности. Вместе с тем, философия осмысливает научные открытия, включая их в контекст сформированного знания и тем самым определяя их значение. С этим связано древнее представление о философии как о царице наук или о науке наук.

Со смешанными

Все перечисленные представления могут присутствовать у человека по отдельности, все вместе и в различных сочетаниях. Научная картина мира, хотя и может составлять значительную часть мировоззрения, никогда не является его адекватной заменой, т.к. в своем индивидуальном бытии человек нуждается как в эмоциях и художественном или чисто бытовом восприятии окружающей действительности, так и в представлениях о том, что находится за пределами достоверно известного или на границе неизвестности, которую предстоит преодолеть в тот или иной момент в процессе познания.

Эволюция представлений

Существуют различные мнения о том, как изменяются представления о мире в истории человечества. Поскольку наука появилась сравнительно недавно, она может давать дополнительные сведения о мире. Однако некоторые философы считают, что со временем научная картина мира должна полностью вытеснить все другие.

По классификации Конта, научная картина мира олицетворяет собой третью, позитивную (после теологической и метафизической) фазу последовательного фазиса философской мысли в истории всего человечества.

Фейербах так сказал о смене своих мыслей:

«Бог был моей первой мыслью, разум — второй, человек — третьей и последней.»

Из представлений Фейербаха идея эволюции философии и социума перешла также в марксизм.

Вселенная

История Вселенной

Рождение Вселенной

В соответствии с данными космологии, Вселенная возникла в результате взрывного процесса, получившего название Большой взрыв, произошедшего около 14 млрд лет назад. Теория Большого взрыва хорошо согласуется с наблюдаемыми фактами (например, расширением Вселенной и преобладанием водорода) и позволила сделать верные предсказания, в частности, о существовании и параметрах реликтового излучения.

В момент Большого взрыва Вселенная занимала микроскопические, квантовые размеры.

В соответствии с инфляционной моделью, в начальной стадии своей эволюции Вселенная пережила период ускоренного расширения (инфляции). Предполагается, что в этот момент Вселенная была «пустой и холодной» (существовало только высокоэнергетическое скалярное поле), а затем заполнилась горячим веществом, продолжавшим расширяться.

Переход энергии в массу не противоречит физическим законам, например, рождение пары частица-античастица из вакуума можно наблюдать и сейчас в некоторых научных экспериментах.

О причинах Большого взрыва выдвинуто несколько гипотез. В соответствии с одной из них, взрыв порождён флуктуацией вакуума. Причина флуктуации — квантовые колебания, которые испытывает любой объект на квантовом уровне; вероятность крупной флуктуации низка, но отлична от нуля. В результате флуктуации вакуум вышел из состояния равновесия (см. туннельный эффект) и перешёл в новое состояние с меньшим энергетическим уровнем (что привело к выделению энергии).

Другая гипотеза, оперирующая в терминах теории струн, предполагает некое внешнее по отношению к нашей Вселенной событие, например, столкновение бран в многомерном пространстве.

Некоторые физики допускают возможность множественности подобных процессов, а значит и множественность вселенных, обладающих разными свойствами. Тот факт, что наша Вселенная приспособлена для образования жизни может объясняться случайностью — в «менее приспособленных» вселенных просто некому это анализировать (см. Антропный принцип и текст лекции «Инфляция, квантовая космология и антропный принцип»). Ряд учёных выдвинули концепцию «кипящей Мультивселенной», в которой непрерывно рождаются новые вселенные и у этого процесса нет начала и конца.

Необходимо отметить, что сам факт Большого взрыва с высокой долей вероятности можно считать доказанным, но объяснения его причин и подробные описания того, как это происходило, пока относятся к разряду гипотез.

Эволюция Вселенной

Расширение и остывание Вселенной в первые секунды существования нашего мира привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме.

Доминирующие гипотезы сводятся к тому, что первые 300—400 тыс. лет Вселенная была заполнена только ионизированным водородом и гелием. По мере расширения и остывания Вселенной они перешли в стабильное нейтральное состояние, образовав обычный газ. Предположительно через 500 млн лет. зажглись первые звёзды, а сгустки вещества, образовавшиеся на ранних стадиях благодаря квантовым флуктуациям, превратились в галактики.

В результате термоядерных реакций в звёздах были синтезированы более тяжёлые элементы (вплоть до углерода). Во время взрывов сверхновых звёзд образовались ещё более тяжёлые элементы. В молодых галактиках процесс образования и гибели звёзд шёл очень бурно. Чем массивнее звезда, тем быстрее она гибнет и рассеивает бо́льшую часть своего вещества в пространстве, обогащая его разнообразными химическими элементами. После взрывов вещество сгущалось снова, в результате чего зажигались звёзды следующих поколений, вокруг которых образовывались планетные системы. Поэтическая фраза «мы состоим из пепла давно угасших звёзд» полностью соответствует действительности.

Образование планетных систем

Образование звёзд и планетных систем изучает наука космогония. Под действием гравитации в газопылевых облаках формируются сгущения с образованием вращающихся газопылевых дисков. Основная масса вещества концентрируется в центре диска, где растёт температура, в результате чего начинается термоядерная реакция и вспыхивает звезда (рождения звёзд в газопылевых облаках наблюдались в телескоп). В остальных частях диска образуются планеты.

Как показывают исследования последних лет, планетные системы вокруг звёзд весьма распространены (во всяком случае в нашей Галактике). В Галактике имеется несколько сотен миллиардов звёзд и, по-видимому, не меньшее количество планет.

Солнечная система образовалась около 5 млрд лет назад. Мы находимся в периферийной части нашей Галактики (хотя и достаточно далеко от её края).

Устройство Вселенной
Одно из важнейших свойств Вселенной — она расширяется, причём ускоренно. Чем дальше расположен объект от нашей галактики, тем быстрее он от нас удаляется (но это не означает, что мы находимся в центре мира: то же самое справедливо для любой точки пространства).

Видимое вещество во Вселенной структурировано в звёздные скопления — галактики. Галактики образуют группы, которые, в свою очередь, входят в сверхскопления галактик. Сверхскопления сосредоточены в основном внутри плоских слоёв, между которыми находится пространство, практически свободное от галактик. Таким образом, в очень больших масштабах Вселенная имеет ячеистую структуру, напоминающую «ноздреватую» структуру хлеба. Однако на ещё бо́льших расстояниях (свыше 1 млрд световых лет) вещество во Вселенной распределено однородно.

Помимо видимого вещества во Вселенной присутствует тёмная материя, проявляющаяся через гравитационное воздействие. Тёмная материя, как и обычное вещество, также сосредоточена в галактиках. Природа тёмной материи пока неизвестна. Кроме того, имеется гипотетическая тёмная энергия, которая является причиной ускоренного расширения Вселенной. По одной из гипотез , в момент Большого взрыва вся тёмная энергия была «спрессована» в маленьком объёме, что и послужило причиной взрыва (в соответствии с другими гипотезами, тёмная энергия может проявляться лишь на больших расстояниях).

Согласно расчётам, свыше 70 % массы во Вселенной приходится на тёмную энергию (если перевести энергию в массу по формуле Эйнштейна), свыше 20 % — на тёмную материю и лишь около 5 % — на обычное вещество.

3

Природа

Пространство и время

: Специальная теория относительности
: Общая теория относительности
Понятия пространства и времени составляют основу физики. Согласно классической физике, созданной Исааком Ньютоном, физические взаимодействия разворачиваются в бесконечном трёхмерном пространстве — так называемом абсолютном пространстве, время в котором может быть измерено универсальными часами (абсолютное время).

В начале двадцатого века учёные обнаружили в ньютоновской физике некоторые противоречия. В частности, физики не могли обьяснить, каким образом скорость света остаётся постоянной вне зависимости от того, движется ли наблюдатель. Альберт Эйнштейн разрешил этот парадокс в своей специальной теории относительности.

В соответствии с теорией относительности, пространство и время относительны — результаты измерения длины и времени зависят от того, движется наблюдатель или нет. Этот эффект проявляется, к примеру, в необходимости корректировать часы на навигационных спутниках GPS.

Основываясь на теории Эйнштейна, Герман Минковский создал элегантную теорию, описывающую пространство и время как 4-мерное пространство-время (пространство Минковского). В пространстве-времени расстояния (точнее, гиперрасстояния, так как они включают время как одну из координат) абсолютны: они одинаковы для любого наблюдателя.

Создав специальную теории относительности, Эйнштейн обобщил её на случай гравитации в общей теорией относительности. В общей теории относительности, массивные тела создают гравитационное поле, которое «искривляет» пространство-время.

Перед современной физикой стоит задача создания общей теории, объединяющей квантовую теорию поля и теорию относительности. Это позволило бы объяснить процессы, происходящие в чёрных дырах и, возможно, механизм Большого взрыва.

Согласно экспериментальным данным, пространство (обычное) нашей Вселенной на больших расстояниях имеет нулевую либо очень маленькую положительную кривизну. Это объясняют быстрым расширением Вселенной в начальный момент, в результате чего элементы кривизны пространства выровнялись (см. Инфляционная модель Вселенной).

В нашей Вселенной пространство имеет три измерения (согласно некоторым теориям, имеются дополнительные измерения на микрорасстояниях), а время — одно. Обьяснение этому пока не найдено.

Время движется только в одном направлении («стрела времени»), и возврат в прошлое возможен только в научной фантастике. Фундаментальные причины этого пока неизвестны. Одно из объяснений основывается на втором законе термодинамики, согласно которому энтропия может только возрастать и поэтому определяет направленность времени. Рост энтропии объясняется вероятностными причинами: на уровне взаимодействия элементарных частиц все физические процессы обратимы, но вероятность цепочки событий в «прямом» и «обратном» направлении может быть разной. Благодаря этой вероятностной разнице мы можем судить о событиях прошлого с большей уверенностью и достоверностью, чем о событиях будущего. Согласно другой гипотезе, редукция волновой функции необратима и потому определяет направленность времени (однако многие учёные сомневаются, что редукция является реальным физическим процессом).

Физический вакуум

Вакуум не является абсолютной пустотой. В соответствии с квантовой теорией поля, в вакууме непрерывно рождаются и умирают виртуальные частицы, которые при определённых условиях могут превращаться в реальные. Например, в ряде физических опытов из вакуума рождаются пары частица-античастица (с превращением энергии в массу). Согласно некоторым теориям, вакуум может находиться в разных состояниях с разными уровнями энергии. Современная наука пока не даёт удовлетворительного описания структуры и свойств вакуума.

Элементарные частицы

: Квантовая механика
: Стандартная модель
Согласно стандартной модели, всё вещество (включая свет) состоит из 12 фундаментальных элементарных частиц и 12 частиц-переносчиков взаимодействий. В это число входят кварки (из которых состоят протоны и нейтроны), электроны, фотоны и другие элементарные частицы.

Всем элементарным частицам присущ корпускулярно-волновой дуализм: с одной стороны, частицы представляют собой единые, неделимые объекты, с другой стороны, они в определённом смысле «размазаны» в пространстве. При некоторых условиях такая «размазанность» может принимать даже макроскопические размеры. Квантовая механика описывает частицу, используя так называемую волновую функцию, которая определяет не где точно находится частица, а где бы она могла находиться и с какой вероятностью. Таким образом, поведение частиц носит принципиально вероятностный характер: вследствие вероятностной «размазанности» частицы в пространстве мы не можем с абсолютной уверенностью определить её местоположение (см. принцип неопределённости). Но в макромире дуализм незначителен.

Пока неизвестны причины того, почему имеется именно такой набор частиц, причины наличия массы у некоторых из них и ряда других параметров. Перед физикой стоит задача построить теорию, в которой свойства частиц вытекали бы из свойств вакуума.

Одной из попыток построить универсальную теорию стала теория струн, в рамках которой фундаментальные элементарные частицы представляют собой одномерные объекты (струны), отличающиеся только своей геометрией.

Взаимодействия

В природе существуют четыре фундаментальные силы и все физические явления обусловлены всего четырьмя видами взаимодействий (в порядке убывания силы):

сильное взаимодействие соединяет кварки в адроны и удерживает протоны и нейтроны в составе атомного ядра (действует на расстояниях порядка 10-15 м);
электромагнитное взаимодействие действует между частицами, имеющими электрический заряд, и «ответственно» за явления электромагнетизма;
слабое взаимодействие обусловливает большинство распадов элементарных частиц, взаимодействия нейтрино с веществом и др. (действует на расстоянии порядка 10-18 м);
благодаря гравитационному взаимодействию объекты, имеющие массу, притягиваются друг к другу.
Согласно новейшим теориям, взаимодействие происходит благодаря переносу частицы-носителя взаимодействия между взаимодействующими частицами. Например, электромагнитное взаимодействие между двумя электронами происходит в результате переноса фотона между ними. Природа гравитационного взаимодействия пока точно неизвестна, предположительно оно происходит в результате переноса гипотетических частиц гравитонов.

Многие физики-теоретики полагают, что в действительности в природе имеется лишь одно взаимодействие, которое может проявляться в четырёх формах (подобно тому, как всё многообразие химических реакций есть различные проявления одних и тех же квантовых эффектов). Поэтому задача фундаментальной физики — разработка теории «великого объединения» взаимодействий. К настоящему времени разработана лишь теория электрослабого взаимодействия, объединившего слабое и электромагнитное взаимодействия.

Как предполагают, в момент Большого взрыва действовало единое взаимодействие, которое разделилось на четыре в первые мгновения существования нашего мира.


Микромир
Атом

Вещество, с которым мы сталкиваемся в повседневной жизни, состоит из атомов. В состав атомов входит атомное ядро, состоящее из протонов и нейтронов, а также электроны, «вращающиеся» вокруг ядра (квантовая механика использует понятие «электронное облако»). Протоны и нейтроны относятся к адронам (которые состоят из кварков). Следует отметить, что в лабораторных условиях удалось получить «атомы», состоящие и из других элементарных частиц (например, пионий и мюоний, в состав которых входят пион и мюон.).

Атомы каждого химического элемента имеют в своём составе одно и то же количество протонов, называемое атомным номером или зарядом ядра. Однако количество нейтронов может различаться, поэтому один химический элемент может быть представлен несколькими изотопами. В настоящее время известно свыше 110 элементов, наиболее массивные из которых нестабильны (см. также Таблица Менделеева).

Атомы могут взаимодействовать друг с другом, образуя химические вещества. Взаимодействие происходит на уровне их электронных оболочек. Химические вещества чрезвычайно многообразны.

Наука пока не решила задачу точного предсказания физических свойств химических веществ.

В XIX веке считалось, что атомы являются первичными «кирпичиками» строения материи. Однако и сейчас остаётся открытым вопрос о том, существует ли предел деления материи, о котором говорил ещё Демокрит (см. Атомизм).

Жизнь

Понятие живого

Согласно определению академика РАН Э.Галимова, жизнь есть материализованное в организмах явление возрастающего и наследуемого упорядочения, присущее при определённых условиях эволюции соединений углерода. Для всех живых организмов характерны обособленность от среды, способность к самовоспроизведению, функционирование посредством обмена веществом и энергией с окружающей средой, способность к изменчивости и адаптации, способность воспринимать сигналы и способность на них реагировать.[2]

Устройство живых организмов, гены и ДНК
Геном

Живые организмы состоят из органических веществ, воды и минеральных соединений. Фенотипические признаки организмов в основном определяются набором их генов, в которых записана большая часть наследственной информации. Количество генов может варьировать от нескольких генов у простейших вирусов до десятков тысяч у высших организмов (около 30 тыс. у человека).

Носителем генетической информации является ДНК — сложная органическая молекула, имеющая форму двойной спирали. Информация на ней "записана" в виде последовательности нуклеотидов, полимером которых она является. В генетическом коде используется лишь 4 «буквы»-нуклеотида; код един для всех земных организмов. Существуют очень немногочисленные исключения из этого правила, которые являются модификациями единого кода (например, метилирование отдельных нуклеотидов).

Генетическая информация реализуется при экспрессии генов в процессах транскрипции и трансляции. Передача генетической информации от родительской клетки дочерним происходит в результате репликации (копирования ДНК комплексом ферментов).

Помимо генов в ДНК имеются некодирующие участки. Некоторые из них выполняют регуляторную функцию (энхансеры, сайленсеры); функция других пока неизвестна.

Генетика достигла впечатляющих успехов. Учёные умеют внедрять гены одних организмов в геномы других, клонировать живые существа, «включать» и «выключать» определённые гены и многое другое. Это привносит проблемы морального плана.

Эволюция живых организмов

Принципы эволюции
Теория эволюции

Согласно теории эволюции, развитие жизни на Земле, в том числе усложнение живых организмов происходит в результате непредсказуемых мутаций и последующего естественного отбора наиболее удачных из них (о механизмах эволюции см. книгу «Эволюция жизни»).

Развитие таких сложных приспособлений, как глаз в результате «случайных» изменений может показаться невероятным. Однако анализ примитивных биологических видов и палеонтологических данных показывает, что эволюция даже самых сложных органов происходила через цепочку небольших изменений, каждое из которых по отдельности не представляет ничего необычного. Компьютерное моделирование развития глаза позволило сделать вывод, что его эволюция могла бы осуществляться даже быстрее, чем это происходило в реальности (см. статью об эволюции глаза).

В целом, эволюция, изменение систем - есть фундаментальное свойство природы, воспроизводимое в лабораторных условиях. Это не противоречит закону возрастания энтропии, так как справедливо для незамкнутых систем (если через систему пропускать энергию, то энтропия в ней может уменьшаться). Процессы самопроизвольного усложнения изучает наука синергетика. Один из примеров эволюции неживых систем — формирование десятков атомов на основе лишь трёх частиц и образование миллиардов сложнейших химических веществ на основе атомов.

История жизни на Земле

Зарождение жизни на Земле представляет пока не до конца решённую проблему. Существует только две теории о зарождении жизни: самозарождение жизни - жизни предшествовала химическая эволюция и занесение жизни из космоса.

Согласно палеонтологическим данным, первые прокариоты (бактерии) появились около 4 млрд лет назад. Первые эукариоты (клетки с ядром) образовались примерно 2 млрд лет назад в результате, согласно одной из наиболее распространённых теорий, симбиоза прокариот. Первые многоклеточные организмы появились около 1 млрд лет назад в результате симбиоза эукариот. Около 600 млн лет назад появились многие знакомые нам животные (например, рыбы, членистоногие и др.). 400 млн лет назад жизнь вышла на сушу. 300 млн лет назад появились деревья (с твёрдыми волокнами) и пресмыкающиеся, 200 млн лет назад — динозавры и яйцекладущие млекопитающие, 65 млн лет назад вымерли динозавры и появились плацентарные млекопитающие, около 100 тыс. лет назад появился современный человек (см. Геохронологическая шкала и сайт «История развития жизни»).

Уровни организации живого

Человек

Расхождение предков современных человекообразных обезьян и человека произошло около 15 млн лет назад. Примерно 5 млн лет назад появились первые гоминиды — австралопитеки. Следует отметить, что формирование «человеческих» черт шло одновременно у нескольких видов гоминид (такой параллелизм в истории эволюционных изменений наблюдался неоднократно).

Около 2,5 млн лет назад от австралопитеков обособился первый представитель рода Homo — человек умелый (Homo habilis), который уже умел изготавливать каменные орудия. 1,6 млн лет назад на смену Homo habilis пришёл человек прямоходящий (Homo erectus, питекантроп) с увеличенным объёмом мозга. Современный человек (кроманьонец) появился около 100 тыс. лет назад в Африке. Примерно 40 тыс. лет назад кроманьонцы перебрались в Европу, вытеснив другой вид людей — неандертальцев.

У человека в гораздо большей степени, чем у животных, развито абстрактное мышление и способность к обобщению.

Материал из Википедии


Вы здесь » <<настрой - КИ >> ш а л о м, хавер ! » ВСЕЛЕННАЯ » Научная картина мира (НКМ)


Создать форум © iboard.ws Видеочат kdovolalmi.cz